168

11 Usage of Microalgae: A Sustainable Approach to Wastewater Treatment

17 Pathak, V.V., Singh, D.P., and Kothari, R. (2014). Phycoremediation of textile

wastewater by unicellular microalga Chlorella pyrenoidosa. Cellular and Molecu-

lar Biology 60: 35–40.

18 González, L.E., Cañizares, R.O., and Baena, S. (1997). Efficiency of ammonia and

phosphorus. Bioresource Technology 60: 259–262.

19 Waqas, R., Arshad, M., Asghar, H.N. et al. (2015). Optimization of factors for

enhanced phycoremediation of Reactive Blue azo dye. International Journal of

Agricultural and Biology 17: 803–808.

20 Lau, P.S., Tam, N.F.Y., and Wong, Y.S. (1995). Effect of algal density on nutrient

removal from primary settled wastewater. Environmental Pollution 89: 59–66.

21 Colak, O. and Kaya, Z. (1988). A study on the possibilities of biological wastewa-

ter treatment using algae. Doga Biyoloji Serisi 12 (1): 18–29.

22 Zhu, L., Wang, Z., Shu, Q. et al. (2013). Nutrient removal and biodiesel pro-

duction by integration of freshwater algae cultivation with piggery wastewater

treatment. Water Research 47 (13): 4294–4302.

23 Shen, Q.-H., Zhi, T.-T., Cheng, L.-H. et al. (2013). Hexavalent chromium detox-

ification by nonliving Chlorella vulgaris cultivated under tuned conditions.

Chemical Engineering Journal 228: 993–1002.

24 Magro, C.D., Deon, M.C., Rossi, A.D. et al. (2012). Chromium (VI) biosorption

and removal of chemical oxygen demand by Spirulina platensis from wastewater

supplemented culture medium. Journal of Environmental Science and Health Part

A 47: 1818–1824.

25 Chong, A.M.Y., Wong, Y.S., and Tam, N.F.Y. (2000). Performance of different

microalgal species in removing nickel and zinc from industrial wastewater.

Chemosphere 41: 251–257.

26 Zhang, S.-Y., Sun, G.-X., and Yin, X.-X. (2013). Biomethylation and volatilization

of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93: 47–53.

27 Lima, S.A.C., Raposo, M.F.J., and Castro, P.M.L. (2004). Biodegradation of

p-chlorophenol by a microalgae consortium. Water Resources 38: 97–102.

28 Hirooka, T., Nagase, H., Uchida, K. et al. (2005). Biodegradation of bisphenol A

and disappearance of its estrogenic activity by the green alga Chlorella fusca var.

vacuolata. Environmental Toxicology and Chemistry 24: 1896–1901.

29 Gong, Q., Feng, Y., and Kang, L. (2014). Effects of light and ph on cell density of

Chlorella vulgaris. Energy Procedia 61: 2012–2015.

30 Kim, J., Liu, Z., Lee, J.Y. et al. (2013). Removal of nitrogen and phosphorus from

municipal wastewater effluent using Chlorella vulgaris and its growth kinetics.

Desalination and Water Treatment 51: 7800–7806.

31 Ho, S.H., Chen, C.Y., and Chang, J.S. (2012). Effect of light intensity and

nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an

indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology

113: 244–252.

32 Sukaˇcová, K., Trtílek, M., and Rataja, T. (2015). Phosphorus removal using a

microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater

treatment. Water Research 71: 55–63.